We develop the basic constructions of homological algebra in the(appropriately defined) unbounded derived categories of modules over algebrasover coalgebras over noncommutative rings (which we call semialgebras overcorings). We define double-sided derived functors SemiTor and SemiExt of thefunctors of semitensor product and semihomomorphisms, and construct anequivalence between the exotic derived categories of semimodules andsemicontramodules. Certain (co)flatness and/or (co)projectivity conditions have to be imposed onthe coring and semialgebra to make the module categories abelian (and thecotensor product associative). Besides, for a number of technical reasons wemostly have to assume that the basic ring has a finite homological dimension(no such assumptions about the coring and semialgebra are made). In the final sections we construct model category structures on thecategories of complexes of semi(contra)modules, and develop relativenonhomogeneous Koszul duality theory for filtered semialgebras andquasi-differential corings. Our motivating examples come from the semi-infinite cohomology theory.Comparison with the semi-infinite (co)homology of Tate Lie algebras and gradedassociative algebras is established in appendices, and the semi-infinitehomology of a locally compact topological group relative to an open profinitesubgroup is defined. An application to the correspondence between complexes ofrepresentations of an infinite-dimensional Lie algebra on the complementarycentral charge levels ($c$ and $26-c$ for the Virasoro) is worked out.
展开▼
机译:我们开发了(适当定义的)模块的无界派生类别中的同构代数的基本构造,该类在非交换环上的代数与在不交换环上的子代数(我们称为半代数过芯)有关。我们定义了半张量积和半同态的函数的双面派生函子SemiTor和SemiExt,并构造了半模和半模超模的奇异派生类之间的等价关系。必须将一定的(共)平坦度和/或(共)射影条件施加到取芯和半代数上,以使模块类别为阿贝尔(和关联的张量积)。此外,出于多种技术原因,我们主要必须假设基本环具有有限的同构维数(没有做出关于取核和半代数的此类假设)。在最后的部分中,我们在半(对映)模的复数类别上构建模型类别结构,并为滤波的半代数和拟微分取芯开发相对非齐次的Koszul对偶理论。我们的启发性例子来自半无限同调理论,在附录中建立了与Tate Lie代数和梯度关联代数的半无限(共)同理的比较,并且局部紧凑拓扑群相对于开放有限子群的半无限同理。被定义为。提出了在互补中心电荷水平上(维拉索罗的$ c $和$ 26-c $)无穷维李代数表示的复数之间的对应关系的应用。
展开▼